ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Carbon Nanotube Substrates Boost Neuronal Electrical Signaling

View Author Information
Dipartimento di Scienze Farmaceutiche, Piazzale Europa 1, Trieste, Italy, Physiology and Pathology Department, Center for Neuroscience B.R.A.I.N., University of Trieste, via Fleming 22, 34127, Trieste, Italy, Department of Pharmaceutical Sciences, University of Ferrara, via Fossato di Mortara 17-19, Ferrara, Italy, Neurobiology Sector and Istituto Nazionale di Fisica della Materia Unit, International School for Advanced Studies (SISSA-ISAS), via Beirut 2−4, 34014 Trieste, Italy, and INSTM, Unità di Trieste, Dipartimento di Scienze Farmaceutiche, Piazzale Europa 1, Trieste, Italy
Cite this: Nano Lett. 2005, 5, 6, 1107–1110
Publication Date (Web):May 6, 2005
https://doi.org/10.1021/nl050637m
Copyright © 2005 American Chemical Society

    Article Views

    5046

    Altmetric

    -

    Citations

    538
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We demonstrate the possibility of using carbon nanotubes (CNTs) as potential devices able to improve neural signal transfer while supporting dendrite elongation and cell adhesion. The results strongly suggest that the growth of neuronal circuits on a CNT grid is accompanied by a significant increase in network activity. The increase in the efficacy of neural signal transmission may be related to the specific properties of CNT materials, such as the high electrical conductivity.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Dipartimento di Scienze Farmaceutiche.

     University of Trieste.

    §

     University of Ferrara.

     International School for Advanced Studies.

     INSTM.

    *

     Corresponding authors. E-mail:  [email protected]; [email protected].

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Full experimental details. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 538 publications.

    1. Luyao Lu. Recent Progress on Transparent Microelectrode-Based Soft Bioelectronic Devices for Neuroscience and Cardiac Research. ACS Applied Bio Materials 2023, 6 (5) , 1701-1719. https://doi.org/10.1021/acsabm.3c00131
    2. K. S. V. Krishna Rao T. J. Sudha Vani B. Adi Lakshmi Duddekunta Hemalatha Kummara Madhusudana Rao . Surface Modified Carbon Nanotubes for Bone Tissue Engineering. , 1-17. https://doi.org/10.1021/bk-2022-1425.ch001
    3. Ajahar Khan Khalid A. Alamry . Surface Modified Carbon Nanotubes: An Introduction. , 1-25. https://doi.org/10.1021/bk-2022-1424.ch001
    4. Taylor C. Suh, Jack Twiddy, Nasif Mahmood, Kiran M. Ali, Mostakima M. Lubna, Philip D. Bradford, Michael A. Daniele, Jessica M. Gluck. Electrospun Carbon Nanotube-Based Scaffolds Exhibit High Conductivity and Cytocompatibility for Tissue Engineering Applications. ACS Omega 2022, 7 (23) , 20006-20019. https://doi.org/10.1021/acsomega.2c01807
    5. Antonio Dominguez-Alfaro, Nuria Alegret, Blanca Arnaiz, Jose M. González-Domínguez, Ana Martin-Pacheco, Unai Cossío, Luca Porcarelli, Susanna Bosi, Ester Vázquez, David Mecerreyes, Maurizio Prato. Tailored Methodology Based on Vapor Phase Polymerization to Manufacture PEDOT/CNT Scaffolds for Tissue Engineering. ACS Biomaterials Science & Engineering 2020, 6 (2) , 1269-1278. https://doi.org/10.1021/acsbiomaterials.9b01316
    6. Bhimareddy Dinesh, Manuela Medelin, Denis Scaini, Federica Lareno Faccini, Federica Quici, Laura Ballerini, Alberto Bianco. Hybrid Interfaces Made of Nanotubes and Backbone-Altered Dipeptides Tune Neuronal Network Architecture. ACS Chemical Neuroscience 2020, 11 (2) , 162-172. https://doi.org/10.1021/acschemneuro.9b00522
    7. Myriam Barrejón, Rossana Rauti, Laura Ballerini, Maurizio Prato. Chemically Cross-Linked Carbon Nanotube Films Engineered to Control Neuronal Signaling. ACS Nano 2019, 13 (8) , 8879-8889. https://doi.org/10.1021/acsnano.9b02429
    8. Moran Yadid, Ron Feiner, Tal Dvir. Gold Nanoparticle-Integrated Scaffolds for Tissue Engineering and Regenerative Medicine. Nano Letters 2019, 19 (4) , 2198-2206. https://doi.org/10.1021/acs.nanolett.9b00472
    9. Wei Jing, Yifan Zhang, Qing Cai, Guoqiang Chen, Lin Wang, Xiaoping Yang, Weihong Zhong. Study of Electrical Stimulation with Different Electric-Field Intensities in the Regulation of the Differentiation of PC12 Cells. ACS Chemical Neuroscience 2019, 10 (1) , 348-357. https://doi.org/10.1021/acschemneuro.8b00286
    10. Sang Hwa Lee, Han Byeol Lee, Yoonyoung Kim, Jae Ryeol Jeong, Min Hyung Lee, Kyungtae Kang. Neurite Guidance on Laser-Scribed Reduced Graphene Oxide. Nano Letters 2018, 18 (12) , 7421-7427. https://doi.org/10.1021/acs.nanolett.8b01651
    11. Denver P. Linklater, Michael De Volder, Vladimir A. Baulin, Marco Werner, Sarah Jessl, Mehdi Golozar, Laura Maggini, Sergey Rubanov, Eric Hanssen, Saulius Juodkazis, Elena P. Ivanova. High Aspect Ratio Nanostructures Kill Bacteria via Storage and Release of Mechanical Energy. ACS Nano 2018, 12 (7) , 6657-6667. https://doi.org/10.1021/acsnano.8b01665
    12. Yimin Huang, Ying Jiang, Qiuyu Wu, Xiangbing Wu, Xingda An, Alexander A. Chubykin, Ji-Xin Cheng, Xiao-Ming Xu, Chen Yang. Nanoladders Facilitate Directional Axonal Outgrowth and Regeneration. ACS Biomaterials Science & Engineering 2018, 4 (3) , 1037-1045. https://doi.org/10.1021/acsbiomaterials.7b00981
    13. Silvia Dante, Alessia Petrelli, Enrica Maria Petrini, Roberto Marotta, Alessandro Maccione, Alessandro Alabastri, Alessandra Quarta, Francesco De Donato, Tiziana Ravasenga, Ayyappan Sathya, Roberto Cingolani, Remo Proietti Zaccaria, Luca Berdondini, Andrea Barberis, Teresa Pellegrino. Selective Targeting of Neurons with Inorganic Nanoparticles: Revealing the Crucial Role of Nanoparticle Surface Charge. ACS Nano 2017, 11 (7) , 6630-6640. https://doi.org/10.1021/acsnano.7b00397
    14. Beatriz Pelaz, Christoph Alexiou, Ramon A. Alvarez-Puebla, Frauke Alves, Anne M. Andrews, Sumaira Ashraf, Lajos P. Balogh, Laura Ballerini, Alessandra Bestetti, Cornelia Brendel, Susanna Bosi, Monica Carril, Warren C. W. Chan, Chunying Chen, Xiaodong Chen, Xiaoyuan Chen, Zhen Cheng, Daxiang Cui, Jianzhong Du, Christian Dullin, Alberto Escudero, Neus Feliu, Mingyuan Gao, Michael George, Yury Gogotsi, Arnold Grünweller, Zhongwei Gu, Naomi J. Halas, Norbert Hampp, Roland K. Hartmann, Mark C. Hersam, Patrick Hunziker, Ji Jian, Xingyu Jiang, Philipp Jungebluth, Pranav Kadhiresan, Kazunori Kataoka, Ali Khademhosseini, Jindřich Kopeček, Nicholas A. Kotov, Harald F. Krug, Dong Soo Lee, Claus-Michael Lehr, Kam W. Leong, Xing-Jie Liang, Mei Ling Lim, Luis M. Liz-Marzán, Xiaowei Ma, Paolo Macchiarini, Huan Meng, Helmuth Möhwald, Paul Mulvaney, Andre E. Nel, Shuming Nie, Peter Nordlander, Teruo Okano, Jose Oliveira, Tai Hyun Park, Reginald M. Penner, Maurizio Prato, Victor Puntes, Vincent M. Rotello, Amila Samarakoon, Raymond E. Schaak, Youqing Shen, Sebastian Sjöqvist, Andre G. Skirtach, Mahmoud G. Soliman, Molly M. Stevens, Hsing-Wen Sung, Ben Zhong Tang, Rainer Tietze, Buddhisha N. Udugama, J. Scott VanEpps, Tanja Weil, Paul S. Weiss, Itamar Willner, Yuzhou Wu, Lily Yang, Zhao Yue, Qian Zhang, Qiang Zhang, Xian-En Zhang, Yuliang Zhao, Xin Zhou, and Wolfgang J. Parak . Diverse Applications of Nanomedicine. ACS Nano 2017, 11 (3) , 2313-2381. https://doi.org/10.1021/acsnano.6b06040
    15. Koby Baranes, Michal Shevach, Orit Shefi, and Tal Dvir . Gold Nanoparticle-Decorated Scaffolds Promote Neuronal Differentiation and Maturation. Nano Letters 2016, 16 (5) , 2916-2920. https://doi.org/10.1021/acs.nanolett.5b04033
    16. Christopher J. Serpell, Kostas Kostarelos, and Benjamin G. Davis . Can Carbon Nanotubes Deliver on Their Promise in Biology? Harnessing Unique Properties for Unparalleled Applications. ACS Central Science 2016, 2 (4) , 190-200. https://doi.org/10.1021/acscentsci.6b00005
    17. Rossana Rauti, Neus Lozano, Veronica León, Denis Scaini, Mattia Musto, Ilaria Rago, Francesco P. Ulloa Severino, Alessandra Fabbro, Loredana Casalis, Ester Vázquez, Kostas Kostarelos, Maurizio Prato, and Laura Ballerini . Graphene Oxide Nanosheets Reshape Synaptic Function in Cultured Brain Networks. ACS Nano 2016, 10 (4) , 4459-4471. https://doi.org/10.1021/acsnano.6b00130
    18. Alessandra Fabbro, Denis Scaini, Verónica León, Ester Vázquez, Giada Cellot, Giulia Privitera, Lucia Lombardi, Felice Torrisi, Flavia Tomarchio, Francesco Bonaccorso, Susanna Bosi, Andrea C. Ferrari, Laura Ballerini, and Maurizio Prato . Graphene-Based Interfaces Do Not Alter Target Nerve Cells. ACS Nano 2016, 10 (1) , 615-623. https://doi.org/10.1021/acsnano.5b05647
    19. Xing Xie, Wenting Zhao, Hye Ryoung Lee, Chong Liu, Meng Ye, Wenjun Xie, Bianxiao Cui, Craig S. Criddle, and Yi Cui . Enhancing the Nanomaterial Bio-Interface by Addition of Mesoscale Secondary Features: Crinkling of Carbon Nanotube Films To Create Subcellular Ridges. ACS Nano 2014, 8 (12) , 11958-11965. https://doi.org/10.1021/nn504898p
    20. Alessandra Aldinucci, Antonio Turco, Tiziana Biagioli, Francesca Maria Toma, Daniele Bani, Daniele Guasti, Cinzia Manuelli, Lisa Rizzetto, Duccio Cavalieri, Luca Massacesi, Tommaso Mello, Denis Scaini, Alberto Bianco, Laura Ballerini, Maurizio Prato, and Clara Ballerini . Carbon Nanotube Scaffolds Instruct Human Dendritic Cells: Modulating Immune Responses by Contacts at the Nanoscale. Nano Letters 2013, 13 (12) , 6098-6105. https://doi.org/10.1021/nl403396e
    21. Huanan Zhang, Paras R. Patel, Zhixing Xie, Scott D. Swanson, Xueding Wang, and Nicholas A. Kotov . Tissue-Compliant Neural Implants from Microfabricated Carbon Nanotube Multilayer Composite. ACS Nano 2013, 7 (9) , 7619-7629. https://doi.org/10.1021/nn402074y
    22. Manoj K. Gottipati, Josheua J. Samuelson, Irina Kalinina, Elena Bekyarova, Robert C. Haddon, and Vladimir Parpura . Chemically Functionalized Single-Walled Carbon Nanotube Films Modulate the Morpho-Functional and Proliferative Characteristics of Astrocytes. Nano Letters 2013, 13 (9) , 4387-4392. https://doi.org/10.1021/nl402226z
    23. Valentina Martinelli, Giada Cellot, Francesca Maria Toma, Carlin S. Long, John H. Caldwell, Lorena Zentilin, Mauro Giacca, Antonio Turco, Maurizio Prato, Laura Ballerini, and Luisa Mestroni . Carbon Nanotubes Instruct Physiological Growth and Functionally Mature Syncytia: Nongenetic Engineering of Cardiac Myocytes. ACS Nano 2013, 7 (7) , 5746-5756. https://doi.org/10.1021/nn4002193
    24. Elena Heister, Eric W. Brunner, Gregg R. Dieckmann, Izabela Jurewicz, and Alan B. Dalton . Are Carbon Nanotubes a Natural Solution? Applications in Biology and Medicine. ACS Applied Materials & Interfaces 2013, 5 (6) , 1870-1891. https://doi.org/10.1021/am302902d
    25. Su Ryon Shin, Sung Mi Jung, Momen Zalabany, Keekyoung Kim, Pinar Zorlutuna, Sang bok Kim, Mehdi Nikkhah, Masoud Khabiry, Mohamed Azize, Jing Kong, Kai-tak Wan, Tomas Palacios, Mehmet R. Dokmeci, Hojae Bae, Xiaowu (Shirley) Tang, and Ali Khademhosseini . Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators. ACS Nano 2013, 7 (3) , 2369-2380. https://doi.org/10.1021/nn305559j
    26. Amélie Béduer, Florent Seichepine, Emmanuel Flahaut, Isabelle Loubinoux, Laurence Vaysse, and Christophe Vieu . Elucidation of the Role of Carbon Nanotube Patterns on the Development of Cultured Neuronal Cells. Langmuir 2012, 28 (50) , 17363-17371. https://doi.org/10.1021/la304278n
    27. Alessandra Fabbro, Susanna Bosi, Laura Ballerini, and Maurizio Prato . Carbon Nanotubes: Artificial Nanomaterials to Engineer Single Neurons and Neuronal Networks. ACS Chemical Neuroscience 2012, 3 (8) , 611-618. https://doi.org/10.1021/cn300048q
    28. Li Fan, Chen Feng, Wenmei Zhao, Li Qian, Yuquan Wang, and Yadong Li . Directional Neurite Outgrowth on Superaligned Carbon Nanotube Yarn Patterned Substrate. Nano Letters 2012, 12 (7) , 3668-3673. https://doi.org/10.1021/nl301428w
    29. Huanan Zhang, Jimmy Shih, Jian Zhu, and Nicholas A. Kotov . Layered Nanocomposites from Gold Nanoparticles for Neural Prosthetic Devices. Nano Letters 2012, 12 (7) , 3391-3398. https://doi.org/10.1021/nl3015632
    30. Silke Musa, Danielle R. Rand, Daire J. Cott, Josine Loo, Carmen Bartic, Wolfgang Eberle, Bart Nuttin, and Gustaaf Borghs . Bottom-Up SiO2 Embedded Carbon Nanotube Electrodes with Superior Performance for Integration in Implantable Neural Microsystems. ACS Nano 2012, 6 (6) , 4615-4628. https://doi.org/10.1021/nn201609u
    31. Valentina Martinelli, Giada Cellot, Francesca Maria Toma, Carlin S. Long, John H. Caldwell, Lorena Zentilin, Mauro Giacca, Antonio Turco, Maurizio Prato, Laura Ballerini, and Luisa Mestroni . Carbon Nanotubes Promote Growth and Spontaneous Electrical Activity in Cultured Cardiac Myocytes. Nano Letters 2012, 12 (4) , 1831-1838. https://doi.org/10.1021/nl204064s
    32. Alessandra Fabbro, Ambra Villari, Jummi Laishram, Denis Scaini, Francesca M. Toma, Antonio Turco, Maurizio Prato, and Laura Ballerini . Spinal Cord Explants Use Carbon Nanotube Interfaces To Enhance Neurite Outgrowth and To Fortify Synaptic Inputs. ACS Nano 2012, 6 (3) , 2041-2055. https://doi.org/10.1021/nn203519r
    33. Ravindra Kempaiah, Alfred Chung, and Vivek Maheshwari . Graphene as Cellular Interface: Electromechanical Coupling with Cells. ACS Nano 2011, 5 (7) , 6025-6031. https://doi.org/10.1021/nn201791k
    34. Hailan Chen, Longhua Guo, Abdul R. Ferhan, and Dong-Hwan Kim . Multilayered Polypyrrole-Coated Carbon Nanotubes To Improve Functional Stability and Electrical Properties of Neural Electrodes. The Journal of Physical Chemistry C 2011, 115 (13) , 5492-5499. https://doi.org/10.1021/jp111498e
    35. Alberto Ansaldo, Elisa Castagnola, Emma Maggiolini, Luciano Fadiga, and Davide Ricci . Superior Electrochemical Performance of Carbon Nanotubes Directly Grown on Sharp Microelectrodes. ACS Nano 2011, 5 (3) , 2206-2214. https://doi.org/10.1021/nn103445d
    36. Vamsi K. Kodali, Jan Scrimgeour, Suenne Kim, John H. Hankinson, Keith M. Carroll, Walt A. de Heer, Claire Berger, and Jennifer E. Curtis . Nonperturbative Chemical Modification of Graphene for Protein Micropatterning. Langmuir 2011, 27 (3) , 863-865. https://doi.org/10.1021/la1033178
    37. Gianni Ciofani, Serena Danti, Delfo D’Alessandro, Leonardo Ricotti, Stefania Moscato, Giovanni Bertoni, Andrea Falqui, Stefano Berrettini, Mario Petrini, Virgilio Mattoli, and Arianna Menciassi . Enhancement of Neurite Outgrowth in Neuronal-Like Cells following Boron Nitride Nanotube-Mediated Stimulation. ACS Nano 2010, 4 (10) , 6267-6277. https://doi.org/10.1021/nn101985a
    38. Hui-Fang Cui, Sandeep Kumar Vashist, Khalid Al-Rubeaan, John H. T. Luong and Fwu-Shan Sheu . Interfacing Carbon Nanotubes with Living Mammalian Cells and Cytotoxicity Issues. Chemical Research in Toxicology 2010, 23 (7) , 1131-1147. https://doi.org/10.1021/tx100050h
    39. Riccardo Marega, Vincent Aroulmoji, Massimo Bergamin, Luigi Feruglio, Francesca Dinon, Alberto Bianco, Erminio Murano and Maurizio Prato . Two-Dimensional Diffusion-Ordered NMR Spectroscopy as a Tool for Monitoring Functionalized Carbon Nanotube Purification and Composition. ACS Nano 2010, 4 (4) , 2051-2058. https://doi.org/10.1021/nn100257h
    40. Dandan Liu, Changqing Yi, Dawei Zhang, Jinchao Zhang and Mengsu Yang . Inhibition of Proliferation and Differentiation of Mesenchymal Stem Cells by Carboxylated Carbon Nanotubes. ACS Nano 2010, 4 (4) , 2185-2195. https://doi.org/10.1021/nn901479w
    41. Shuchi Agarwal, Xiaozhu Zhou, Feng Ye, Qiyuan He, George C. K. Chen, Jianchow Soo, Freddy Boey, Hua Zhang and Peng Chen . Interfacing Live Cells with Nanocarbon Substrates. Langmuir 2010, 26 (4) , 2244-2247. https://doi.org/10.1021/la9048743
    42. Melburne C. LeMieux, Seihout Sok, Mark E. Roberts, Justin P. Opatkiewicz, Derrick Liu, Soumendra N. Barman, Nishant Patil, Subhasish Mitra and Zhenan Bao . Solution Assembly of Organized Carbon Nanotube Networks for Thin-Film Transistors. ACS Nano 2009, 3 (12) , 4089-4097. https://doi.org/10.1021/nn900827v
    43. Edward Jan, Jeffrey L. Hendricks, Vincent Husaini, Sarah M. Richardson-Burns, Andrew Sereno, David C. Martin and Nicholas A. Kotov . Layered Carbon Nanotube-Polyelectrolyte Electrodes Outperform Traditional Neural Interface Materials. Nano Letters 2009, 9 (12) , 4012-4018. https://doi.org/10.1021/nl902187z
    44. Shih-Rung Yeh, Yung-Chan Chen, Huan-Chieh Su, Tri-Rung Yew, Hsiu-Hua Kao, Yu-Tao Lee, Tai-An Liu, Hsieh Chen, Yen-Chung Chang, Pin Chang and Hsin Chen . Interfacing Neurons both Extracellularly and Intracellularly Using Carbon−Nanotube Probes with Long-Term Endurance. Langmuir 2009, 25 (13) , 7718-7724. https://doi.org/10.1021/la900264x
    45. Nadine Wong Shi Kam, Edward Jan and Nicholas A. Kotov. Electrical Stimulation of Neural Stem Cells Mediated by Humanized Carbon Nanotube Composite Made with Extracellular Matrix Protein. Nano Letters 2009, 9 (1) , 273-278. https://doi.org/10.1021/nl802859a
    46. Giuseppe Massobrio, Paolo Massobrio and Sergio Martinoia . Modeling the Neuron-Carbon Nanotube-ISFET Junction to Investigate the Electrophysiological Neuronal Activity. Nano Letters 2008, 8 (12) , 4433-4440. https://doi.org/10.1021/nl802341r
    47. Thomas Crouzier, Aditya Nimmagadda, Matthias U. Nollert and Peter S. McFetridge. Modification of Single Walled Carbon Nanotube Surface Chemistry to Improve Aqueous Solubility and Enhance Cellular Interactions. Langmuir 2008, 24 (22) , 13173-13181. https://doi.org/10.1021/la801999n
    48. Vasilios Georgakilas, Athanasios Bourlinos, Dimitrios Gournis, Theodoros Tsoufis, Christos Trapalis, Aurelio Mateo-Alonso and Maurizio Prato. Multipurpose Organically Modified Carbon Nanotubes: From Functionalization to Nanotube Composites. Journal of the American Chemical Society 2008, 130 (27) , 8733-8740. https://doi.org/10.1021/ja8002952
    49. Waldemar Hällström,, Thomas Mårtensson,, Christelle Prinz,, Per Gustavsson,, Lars Montelius,, Lars Samuelson, and, Martin Kanje. Gallium Phosphide Nanowires as a Substrate for Cultured Neurons. Nano Letters 2007, 7 (10) , 2960-2965. https://doi.org/10.1021/nl070728e
    50. Dimitrios Tasis,, Nikos Tagmatarchis,, Alberto Bianco, and, Maurizio Prato. Chemistry of Carbon Nanotubes. Chemical Reviews 2006, 106 (3) , 1105-1136. https://doi.org/10.1021/cr050569o
    51. Radu-Dan Rusu, Ioana-Alexandra Trofin, Andra-Ionela Gavril. Polyimide nanocomposites and blends for biomedical applications. 2024, 353-394. https://doi.org/10.1016/B978-0-323-90294-6.00003-5
    52. Jasleen Kaur, Farha Deeba Khan, Saba Naqvi. Neuroprotection through nanotechnology. 2024, 1883-1903. https://doi.org/10.1016/B978-0-443-23763-8.00080-4
    53. Christopher Adams, Bushra Kabiri, Raja Haseeb Basit, Jessica Wiseman, Divya Maitreyi Chari. Developing High-Fidelity In Vitro Models of Traumatic Brain Injury to Test Therapeutic Biomaterials. 2024, 271-315. https://doi.org/10.1007/978-3-031-49744-5_10
    54. S. Moslehi, C. Rowland, J. H. Smith, W. J. Watterson, W. Griffiths, R. D. Montgomery, S. Philliber, C. A. Marlow, M.-T. Perez, R. P. Taylor. Fractal Electronics for Stimulating and Sensing Neural Networks: Enhanced Electrical, Optical, and Cell Interaction Properties. 2024, 849-875. https://doi.org/10.1007/978-3-031-47606-8_43
    55. Marjolaine Boulingre, Roberto Portillo-Lara, Rylie A. Green. Biohybrid neural interfaces: improving the biological integration of neural implants. Chemical Communications 2023, 59 (100) , 14745-14758. https://doi.org/10.1039/D3CC05006H
    56. Seung Soo Lee, Fatma Oudjedi, Andrew G. Kirk, Miltiadis Paliouras, Mark A. Trifiro. Photothermal therapy of papillary thyroid cancer tumor xenografts with targeted thyroid stimulating hormone receptor antibody functionalized multiwalled carbon nanotubes. Cancer Nanotechnology 2023, 14 (1) https://doi.org/10.1186/s12645-023-00184-9
    57. A. M. Kamalov, V. V. Kodolova-Chukhontseva, E. N. Dresvyanina, T. P. Maslennikova, I. P. Dobrovolskaya, E. M. Ivan’kova, E. N. Popova, V. E. Smirnova, V. E. Yudin. Effect of Nanotubes on the Electrical and Mechanical Properties of Chitosan Films. Technical Physics 2023, 68 (S2) , S366-S373. https://doi.org/10.1134/S1063784223900279
    58. Pardis Yousefi Talouki, Reyhaneh Tamimi, Soheila Zamanlui Benisi, Vahabodin Goodarzi, Shahrokh Shojaei, Saeed Hesami tackalou, Hamid Reza Samadikhah. Polyglycerol sebacate (PGS)-based composite and nanocomposites: properties and applications. International Journal of Polymeric Materials and Polymeric Biomaterials 2023, 72 (17) , 1360-1374. https://doi.org/10.1080/00914037.2022.2097681
    59. Bahaa Daou, Alessandro Silvestri, Haizpea Lasa, Donato Mancino, Maurizio Prato, Nuria Alegret. Organic Functional Group on Carbon Nanotube Modulates the Maturation of SH‐SY5Y Neuronal Models. Macromolecular Bioscience 2023, 23 (11) https://doi.org/10.1002/mabi.202300173
    60. Sangjun Sim, Hyogeun Shin, Kyubin Bae, Hyunjun Han, Yunsung Kang, Jiwan Woo, Yakdol Cho, Il-Joo Cho, Jongbaeg Kim. Neural probe integrated with low-impedance electrodes implemented using vertically aligned carbon nanotubes for three-dimensional mapping of neural signals. Sensors and Actuators B: Chemical 2023, 393 , 134124. https://doi.org/10.1016/j.snb.2023.134124
    61. Deena Elsori, Gowhar Rashid, Nihad Ashraf Khan, Punya Sachdeva, Riya Jindal, Falak Kayenat, Bhuvi Sachdeva, Mohammad Azhar Kamal, Asaad Ma Babker, Sherif Ashraf Fahmy. Nanotube breakthroughs: unveiling the potential of carbon nanotubes as a dual therapeutic arsenal for Alzheimer’s disease and brain tumors. Frontiers in Oncology 2023, 13 https://doi.org/10.3389/fonc.2023.1265347
    62. Elena G. Varlamova, Egor Y. Plotnikov, Ilya V. Baimler, Sergey V. Gudkov, Egor A. Turovsky. Pilot Study of Cytoprotective Mechanisms of Selenium Nanorods (SeNrs) under Ischemia-like Conditions on Cortical Astrocytes. International Journal of Molecular Sciences 2023, 24 (15) , 12217. https://doi.org/10.3390/ijms241512217
    63. Ting Ye, Yi Yang, Jin Bai, Feng-Ying Wu, Lu Zhang, Long-Yue Meng, Yan Lan. The mechanical, optical, and thermal properties of graphene influencing its pre-clinical use in treating neurological diseases. Frontiers in Neuroscience 2023, 17 https://doi.org/10.3389/fnins.2023.1162493
    64. Chethani Ruhunage, Vaishnavi Dhawan, Chaminda P. Nawarathne, Abdul Hoque, Xinyan Tracy Cui, Noe T. Alvarez. Evaluation of Polymer-Coated Carbon Nanotube Flexible Microelectrodes for Biomedical Applications. Bioengineering 2023, 10 (6) , 647. https://doi.org/10.3390/bioengineering10060647
    65. Beilin Zhang, Ruijie Xie, Jiamin Jiang, Shiping Hao, Bin Fang, Jiaxin Zhang, Hua Bai, Bo Peng, Lin Li, Zhiyuan Liu, Li Fu. Implantable neural electrodes: from preparation optimization to application. Journal of Materials Chemistry C 2023, 11 (20) , 6550-6572. https://doi.org/10.1039/D2TC05162A
    66. Shenzhong Jiang, Ruxu Geng, Renzhi Wang, Xiaoguang Li, Xinjie Bao. The potential of hydrogels as a niche for promoting neurogenesis and regulating neuroinflammation in ischemic stroke. Materials & Design 2023, 229 , 111916. https://doi.org/10.1016/j.matdes.2023.111916
    67. Ajahar Khan, Khalid A. Alamry, Raed H. Althomali. Functionalized Carbon Nanotubes for Treatment of Various Diseases. 2023, 339-376. https://doi.org/10.1002/9781119905080.ch14
    68. Jinning Li, Yuhang Cheng, Minling Gu, Zhen Yang, Lisi Zhan, Zhanhong Du. Sensing and Stimulation Applications of Carbon Nanomaterials in Implantable Brain-Computer Interface. International Journal of Molecular Sciences 2023, 24 (6) , 5182. https://doi.org/10.3390/ijms24065182
    69. Wanying Huang, Zhenyu Wang, Junyan Luo. Molecular Dynamics Study of the Curvature-Driven Interactions between Carbon-Based Nanoparticles and Amino Acids. Molecules 2023, 28 (2) , 482. https://doi.org/10.3390/molecules28020482
    70. Lopamudra Giri, Smruti Rekha Rout, Kenguva Gowtham, Mohammad A.S. Abourehab, Prashant Kesharwani, Rambabu Dandela. Biomimetic carbon nanotubes for neurological disease therapeutic. 2023, 229-253. https://doi.org/10.1016/B978-0-323-85199-2.00001-7
    71. Shaban Ahmad, Fatima Nazish Khan, Ayyagari Ramlal, Shahanaz Begum, Sahar Qazi, Khalid Raza. Nanoinformatics and nanomodeling: Recent developments in computational nanodrug design and delivery systems. 2023, 297-332. https://doi.org/10.1016/B978-0-323-91182-5.00001-2
    72. Teddy Tite, Liliana Marinela Balescu, Adrian-Claudiu Popa, George E. Stan. Carbon-based nanomaterials for nervous tissue engineering. 2023, 59-124. https://doi.org/10.1016/B978-0-323-90554-1.00007-0
    73. Taranpreet Kaur, Raman Preet Singh. Carbon Nanotubes: A Review of Toxicity and Applicability in Biomedical Applications. 2023, 517-558. https://doi.org/10.1007/978-981-99-2302-1_22
    74. Cheng Qin, Zhiping Qi, Su Pan, Peng Xia, Weijian Kong, Bin Sun, Haorui Du, Renfeng Zhang, Longchuan Zhu, Dinghai Zhou, Xiaoyu Yang. Advances in Conductive Hydrogel for Spinal Cord Injury Repair and Regeneration. International Journal of Nanomedicine 2023, Volume 18 , 7305-7333. https://doi.org/10.2147/IJN.S436111
    75. Shujie Chen, Haoran Tian, Jinlong Mao, Feng Ma, Mengtian Zhang, Feixiang Chen, Pengfei Yang. Preparation and application of chitosan-based medical electrospun nanofibers. International Journal of Biological Macromolecules 2023, 226 , 410-422. https://doi.org/10.1016/j.ijbiomac.2022.12.056
    76. Saba Moslehi, Conor Rowland, Julian H. Smith, Willem Griffiths, William J. Watterson, Cristopher M. Niell, Benjamín J. Alemán, Maria-Thereza Perez, Richard P. Taylor. Comparison of fractal and grid electrodes for studying the effects of spatial confinement on dissociated retinal neuronal and glial behavior. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-21742-y
    77. Jordi Amagat, Yingchun Su, Frederik Høbjerg Svejsø, Alice Le Friec, Steffan Møller Sønderskov, Mingdong Dong, Ying Fang, Menglin Chen. Self-snapping hydrogel-based electroactive microchannels as nerve guidance conduits. Materials Today Bio 2022, 16 , 100437. https://doi.org/10.1016/j.mtbio.2022.100437
    78. Hong Cheng, Yan Huang, Jiayi Qian, Fanzhe Meng, Yubo Fan. Organic photovoltaic device enhances the neural differentiation of rat bone marrow-derived mesenchymal stem cells. Medicine in Novel Technology and Devices 2022, 16 , 100176. https://doi.org/10.1016/j.medntd.2022.100176
    79. Andrzej Zieliński, Beata Majkowska-Marzec. Whether Carbon Nanotubes Are Capable, Promising, and Safe for Their Application in Nervous System Regeneration. Some Critical Remarks and Research Strategies. Coatings 2022, 12 (11) , 1643. https://doi.org/10.3390/coatings12111643
    80. Soheila Pourkhodadad, Hessam Hosseinkazemi, Shahin Bonakdar, Houra Nekounam. Biomimetic engineered approaches for neural tissue engineering: Spinal cord injury. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2022, 5 https://doi.org/10.1002/jbm.b.35171
    81. Sadia Anjum, Khulood Al-Abbosh, Mohd Saeed, Tahir Ahmed, Irfan Ahmad, Edreese H. Alsharaeh. Synthesis of Gold Nanoparticles and Their Reduced Graphene Oxide Nanocomposites Through a Simplified Approach and Assessment of Their Bactericidal Potential. Science of Advanced Materials 2022, 14 (8) , 1361-1368. https://doi.org/10.1166/sam.2022.4332
    82. Xiaolie He, Yanjing Zhu, Bei Ma, Xu Xu, Ruiqi Huang, Liming Cheng, Rongrong Zhu. Bioactive 2D nanomaterials for neural repair and regeneration. Advanced Drug Delivery Reviews 2022, 187 , 114379. https://doi.org/10.1016/j.addr.2022.114379
    83. Guoxu Zhao, Hongwei Zhou, Guorui Jin, Birui Jin, Songmei Geng, Zhengtang Luo, Zigang Ge, Feng Xu. Rational design of electrically conductive biomaterials toward excitable tissues regeneration. Progress in Polymer Science 2022, 131 , 101573. https://doi.org/10.1016/j.progpolymsci.2022.101573
    84. Sneham Tiwari, Ajeet Kaushik. Nano-Neurogenesis for CNS Diseases and Disorders. Frontiers in Nanotechnology 2022, 4 https://doi.org/10.3389/fnano.2022.931259
    85. Wei Pi, Liping Zhou, Wei Zhang, Songyang Liu, Ci Li, Meng Zhang, Yongqiang Wen, Peixun Zhang. Three-dimensional conductive polycaprolactone/carbon nanotubes scaffolds for peripheral nerve regeneration. Journal of Materials Science 2022, 57 (24) , 11289-11299. https://doi.org/10.1007/s10853-022-07336-z
    86. Margarita R. Chetyrkina, Fedor S. Fedorov, Albert G. Nasibulin. In vitro toxicity of carbon nanotubes: a systematic review. RSC Advances 2022, 12 (25) , 16235-16256. https://doi.org/10.1039/D2RA02519A
    87. Jianqiang Zhu, Qingfeng Fu, Lujie Song, Leyi Liu, Zhiwen Zheng, Yong Xu, Zhihong Zhang, . Advances in Peripheral Nerve Injury Repair with the Application of Nanomaterials. Journal of Nanomaterials 2022, 2022 , 1-22. https://doi.org/10.1155/2022/7619884
    88. W.T. Lin, Z.W. Lin, T.Y. Kuo, C.S. Chien, J.W. Huang, Y.L. Chung, C.P. Chang, M.Z. Ibrahim, H.T. Lee. Mechanical and biological properties of atmospheric plasma-sprayed carbon nanotube-reinforced tantalum pentoxide composite coatings on Ti6Al4V alloy. Surface and Coatings Technology 2022, 437 , 128356. https://doi.org/10.1016/j.surfcoat.2022.128356
    89. Qi Zeng, Xiaojian Li, Shiyun Zhang, Chunshan Deng, Tianzhun Wu. Think big, see small—A review of nanomaterials for neural interfaces. Nano Select 2022, 3 (5) , 903-918. https://doi.org/10.1002/nano.202100256
    90. Milad Rahimzadegan, Qazal Mohammadi, Mehdi Shafieian, Omid Sabzevari, Zahra Hassannejad. Influence of reducing agents on in situ synthesis of gold nanoparticles and scaffold conductivity with emphasis on neural differentiation. Biomaterials Advances 2022, 134 , 112634. https://doi.org/10.1016/j.msec.2021.112634
    91. Ottavia Bettucci, Giovanni Maria Matrone, Francesca Santoro. Conductive Polymer‐Based Bioelectronic Platforms toward Sustainable and Biointegrated Devices: A Journey from Skin to Brain across Human Body Interfaces. Advanced Materials Technologies 2022, 7 (2) https://doi.org/10.1002/admt.202100293
    92. Francesca Zummo, Pietro Esposito, Huilei Hou, Cecilia Wetzl, Gemma Rius, Raphaela Tkatchenko, Anton Guimera, Philippe Godignon, Maurizio Prato, Elisabet Prats-Alfonso, Alejandro Criado, Denis Scaini. Bidirectional Modulation of Neuronal Cells Electrical and Mechanical Properties Through Pristine and Functionalized Graphene Substrates. Frontiers in Neuroscience 2022, 15 https://doi.org/10.3389/fnins.2021.811348
    93. Panangattukara Prabhakaran Praveen Kumar, Dong-Kwon Lim. Gold-Polymer Nanocomposites for Future Therapeutic and Tissue Engineering Applications. Pharmaceutics 2022, 14 (1) , 70. https://doi.org/10.3390/pharmaceutics14010070
    94. Israt Jahan. Nanotechnology for Drug Delivery and Cancer Therapy. 2022, 338-362. https://doi.org/10.4018/978-1-7998-8936-6.ch015
    95. Mafalda R. Almeida, João C. F. Nunes, Raquel O. Cristóvão, Joaquim L. Faria, Ana P. M. Tavares, Cláudia G. Silva, Mara G. Freire. Carbon Nanotubes for Biomedical Applications. 2022, 285-331. https://doi.org/10.1007/978-981-16-7483-9_14
    96. Ammar Z. Alshemary, Ali Motameni, Zafer Evis. Biomedical applications of metal oxide–carbon composites. 2022, 371-405. https://doi.org/10.1016/B978-0-12-822694-0.00004-1
    97. Daniela M. Fidalgo, Mario D. Contin, Adriana A. Kolender, Norma D’Accorso. Polymeric Biocomposites from Renewable and Sustainable Natural Resources. 2022, 65-108. https://doi.org/10.1007/978-3-030-70266-3_3
    98. Jyotendra Nath, Kashma Sharma, Shashikant Kumar, Vijay Kumar, Rakesh Sehgal. Polymer/Carbon Nanocomposites for Biomedical Applications. 2022, 109-150. https://doi.org/10.1007/978-3-030-70266-3_4
    99. Stefano A. Mezzasalma, Lucia Grassi, Mario Grassi. Physical and chemical properties of carbon nanotubes in view of mechanistic neuroscience investigations. Some outlook from condensed matter, materials science and physical chemistry. Materials Science and Engineering: C 2021, 131 , 112480. https://doi.org/10.1016/j.msec.2021.112480
    100. Md Eshrat E. Alahi, Yonghong Liu, Zhen Xu, Hao Wang, Tianzhun Wu, Subhas Chandra Mukhopadhyay. Recent advancement of electrocorticography (ECoG) electrodes for chronic neural recording/stimulation. Materials Today Communications 2021, 29 , 102853. https://doi.org/10.1016/j.mtcomm.2021.102853
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect